
Wavy
En physique, les ondes gravitationnelles sont des oscillations de la courbure de l’espace-temps. Albert Einstein en a prédit l’existence en 1918 en se basant sur sa théorie de la relativité générale. Maintenant, des scientifiques ont détecté des ondes gravitationnelles du Big Bang, ce qui valide la théorie. C’est comme une sorte de „graal de la physique”, selon l’écrivain scientifique Grichka Bogdanov.
Les ondes électromagnétiques (perturbations des champs électrique et magnétique) sont produites par les particules chargées accélérées. De la même façon, les ondes gravitationnelles sont produites par des masses accélérées. La production efficace d’ondes gravitationnelles demande de très grandes masses et de très grandes accélérations (des vitesses approchant celle de la lumière). Ainsi, les sources d’ondes gravitationnelles sont principalement des systèmes astrophysiques impliquant des objets massifs et très denses comme les étoiles à neutrons ou les trous noirs pouvant supporter de grandes accélérations.
Russell Hulse et Joseph Taylor ont fourni une preuve indirecte de l’existence de telles ondes en observant le pulsar binaire PSR B1913+16 et montrant que sa période orbitale décroit précisément comme le prédit la théorie de la relativité générale si l’on considère que ce système perd son énergie par émission gravitationnelle. Ce résultat a valu à ces deux chercheurs américains de recevoir le prix Nobel de Physique en 1993.
En mars 2014, des chercheurs du centre d’astrophysique Harvard-Smithsonian fournissent une preuve directe de l’existence des ondes gravitationnelles grâce aux observations du fond diffus cosmologique fournies par le télescope BICEP (Background Imaging of Cosmic Extragalactic Polarization).
Dans la théorie de la relativité générale, la gravité provient de la courbure de l’espace-temps. Cette courbure est causée par la présence d’objets possédant une masse. Plus la masse de l’objet est grande, plus la courbure produite est grande et ainsi plus la gravité est intense.
Lorsque des objets massifs se déplacent dans l’espace-temps, la courbure de l’espace-temps s’ajuste pour refléter le changement de la position de ses objets. Sous certaines circonstances, les objets accélérés peuvent produire une perturbation de l’espace-temps qui s’étend et se propage de manière analogue à „des vagues à la surface de l’eau”. On désigne par onde gravitationnelle ce type de perturbation. On prédit qu’elles se propagent à la vitesse de la lumière.
Ainsi, l’existence des ondes gravitationnelles résulte en quelque sorte de l’application à la gravité du principe d’invariance de Lorentz qui introduit le concept de vitesse limite pour la propagation des interactions physiques (concept inexistant dans la vision newtonnienne de la gravitation, cette interaction se propageant à une vitesse infinie dans cette théorie).
L’analogie entre des charges électriques en mouvement et des masses en mouvement permet de mieux appréhender le phénomène : de la même manière que l’accélération de particules chargées produit des ondes électromagnétiques, l’accélération de particules possédant une masse produit des ondes gravitationnelles.
La plupart des théories de gravité quantique postulent l’existence d’un quantum correspondant appelé le graviton de façon analogue à l’électrodynamique quantique dans laquelle le vecteur de la force électromagnétique n’est autre que le photon. L’onde gravitationnelle est associée au graviton, et ses caractéristiques donnent alors de précieuses informations sur cette particule.